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Let X be a compact topological space and C(X) the space of real
(complex) continuous functions on X. For g E C(X) define

II gil = sup{1 g(x)l: x EX}. (1)

Let F be an approximating function with parameter space P (a non-empty
closed subset of (real or complex) n-space) such that F(A, .) E C(X) for
A E P. Let Z be a finite subset of X. The problem of approximation with
interpolation on Z is: given IE C(X), find a parameter A * minimizing
e(A) = III - F(A, . )11 subject to the constraint

F(A, z) = I(z), zEZ. (*)

Such a parameter A * is called best and F(A *, .) is called a best approx­
imation to I with interpolation on Z [I, 50IT.[.

We will only consider approximation by approximating families (F, P)
satisfying Young's condition [2; 6, p. 27]. These include finite-dimensional
linear families, real families unisolvent on an interval [a,PI, and tame
rationals [3,4]. Let II lie be the maximum norm on n-space.

DEFINITION. (F, P) satisfies Young's condition if

(i) IIA k lie --> CX) implies IIF(A k, .)11--> cx),

(ii) A E P, A k E P, {A k} --> A implies F(A k, .) converges uniformly to
F(A,') on X.

By doing weighted uniform approximation with weights large on Z, we
can produce approximations F(A,·) with/(z)-F(A,z) small. This suggests
that a limit of weighted approximation with weights -->CX) on Z would be best
to I with respect to (*).
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Best approximations with respect to weight w, which is >1 on Z and 1 ofT
Z, exist by standard arguments.

THEOREM. Let (F, P) satisfy Young's condition.
Let F(B, .) interpolate f on Z. Let {wd be a sequence of positive weight

functions on X such that wk(x) = 1 for x (/:. Z and wk(z) --400 for z E Z. Let
A k be best with respect to Wk' Then {A k} has an accumulation point and if
A ° is an accumulation point, A ° is best and there is a sequence {k(j)} such
that {F(A k(j), . )} --4 F(A 0, .) uniformly on X.

Proof Suppose {A k} is unbounded. By arguments of [2], Ilf - F(A k, .)11
is unbounded, hence II wk(f - F(A k, .)11 is unbounded. But

II wk(f - F(B, .))11 = Ilf - F(B, . )11 (2)

and this would contradict A k being best with respect to Wk'
As {A k} is bounded, it has an accumulation point A 0. By taking a subse­

quence if necessary, we can assume {A k} --4 A 0. We claim A ° satisfies (*).
Suppose not then there is 1»0 and zEZ such that If(z)-F(AO,z)I>I>.
Hence

wdf(z) - F(A \ z)]--4 00

and this (with (2)) contradicts optimality of A k. Next suppose A ° is not best
with respect to (*). Then there is C satisfying (*) and I> > 0 such that

Now we claim

Ilf - F(C, . )11 < Ilf - F(A 0, • )11- 1>.

lim inf II wk(f - F(A \ . ))11> Ilf - F(A 0, . )11·
k~oo

(3)

(4 )

This is proven by letting x be a point at which Ilf - F(A 0, . )11 is attained,
then

wk(x)(f(x) - F(A \ x)) --4 f(x) - F(A 0, x).

Now (3,4) contradict optimality of A k. A ° is best and uniform convergence
follows by definition.

L. Keener [5] has announced results for a special case of our problem.
If X is finite, we can use programs for weighted discrete uniform approx­

imation to get best interpolating approximations.
The conclusion of the theorem may not hold if Young's condition fails.

EXAMPLE. Let X= {O, 1/2, I}, Z= {Of, and f(x)=x 2
• Let F(A,x)=
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a, +a2x, P = {Cap a2): a, * O} U {CO, O)}. Let wk(x) = k if x = 0 and
wk(x) = 1 for x *O. There is a best approximation h with respect to weight
wk by first-degree polynomials and wk(f - h) must alternate twice on X,
hence h E (F, P). By drawing a diagram it is seen that h is not near the
zero function. But the only interpolating approximation by (F, P) is zero.
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